PPE can be recycled to make stronger concrete

2022-08-26 20:44:20 By : Ms. Anna Bai

Click here to sign in with or

Engineers at RMIT University have developed a method to use disposable personal protective equipment (PPE) to make concrete stronger, providing an innovative way to significantly reduce pandemic-generated waste.

The RMIT team is the first to investigate the feasibility of recycling three key types of PPE—isolation gowns, face masks and rubber gloves—into concrete.

Published in the journals Case Studies in Construction Materials, Science of the Total Environment and Journal of Cleaner Production, the studies by RMIT School of Engineering researchers demonstrate the potential for PPE to be used as reinforcement materials in structural concrete.

The studies found shredded PPE could increase the strength of concrete by up to 22% and improve resistance to cracking.

The RMIT School of Engineering team's industry partner, Casafico Pty Ltd, is planning to use these research findings in a field project.

Since the start of the COVID-19 pandemic, an estimated 54,000 tons of PPE waste has been produced on average globally each day. About 129 billion disposable face masks are used and discarded around the world every month.

First author, Ph.D. researcher Shannon Kilmartin-Lynch, said the research brought a circular economy approach to the challenge of dealing with health care waste.

"We urgently need smart solutions for the ever-growing pile of COVID-19 generated waste—this challenge will remain even after the pandemic is over," said Kilmartin-Lynch, a Vice-Chancellor's Indigenous Pre-Doctoral Fellow at RMIT.

"Our research found that incorporating the right amount of shredded PPE could improve the strength and durability of concrete."

Joint lead author, Dr. Rajeev Roychand, said there was real potential for construction industries around the world to play a significant role in transforming this waste into a valuable resource.

"While our research is in the early stages, these promising initial findings are an important step towards the development of effective recycling systems to keep disposable PPE waste out of landfill," he said.

In three separate feasibility studies, disposable face masks, rubber gloves and isolation gowns were first shredded then incorporated into concrete at various volumes, between 0.1% and 0.25%.

Corresponding author and research team leader Professor Jie Li said PPE waste—both from health care and the general public—was having a significant impact on the environment.

"We have all seen disposable masks littering our streets, but even when this waste is disposed of properly it all ends up in landfill," Li said.

"With a circular economy approach, we could keep that waste out of landfill while squeezing the full value out of these materials to create better products—it's a win on all fronts."

The next step for the research is to evaluate the potential for mixing the PPE streams, develop practical implementation strategies and work towards field trials.

The team is keen to collaborate with the health care and construction industries to further develop the research. Explore further Recycling face masks into roads to tackle COVID-generated waste More information: Shannon Kilmartin-Lynch et al, A sustainable approach on the utilisation of COVID-19 plastic based isolation gowns in structural concrete, Case Studies in Construction Materials (2022). DOI: 10.1016/j.cscm.2022.e01408

Shannon Kilmartin-Lynch et al, Application of COVID-19 single-use shredded nitrile gloves in structural concrete: Case study from Australia, Science of The Total Environment (2021). DOI: 10.1016/j.scitotenv.2021.151423

Shannon Kilmartin-Lynch et al, Preliminary evaluation of the feasibility of using polypropylene fibres from COVID-19 single-use face masks to improve the mechanical properties of concrete, Journal of Cleaner Production (2021). DOI: 10.1016/j.jclepro.2021.126460 Journal information: Journal of Cleaner Production , Science of the Total Environment

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Tech Xplore in any form.

Daily science news on research developments and the latest scientific innovations

Medical research advances and health news

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.